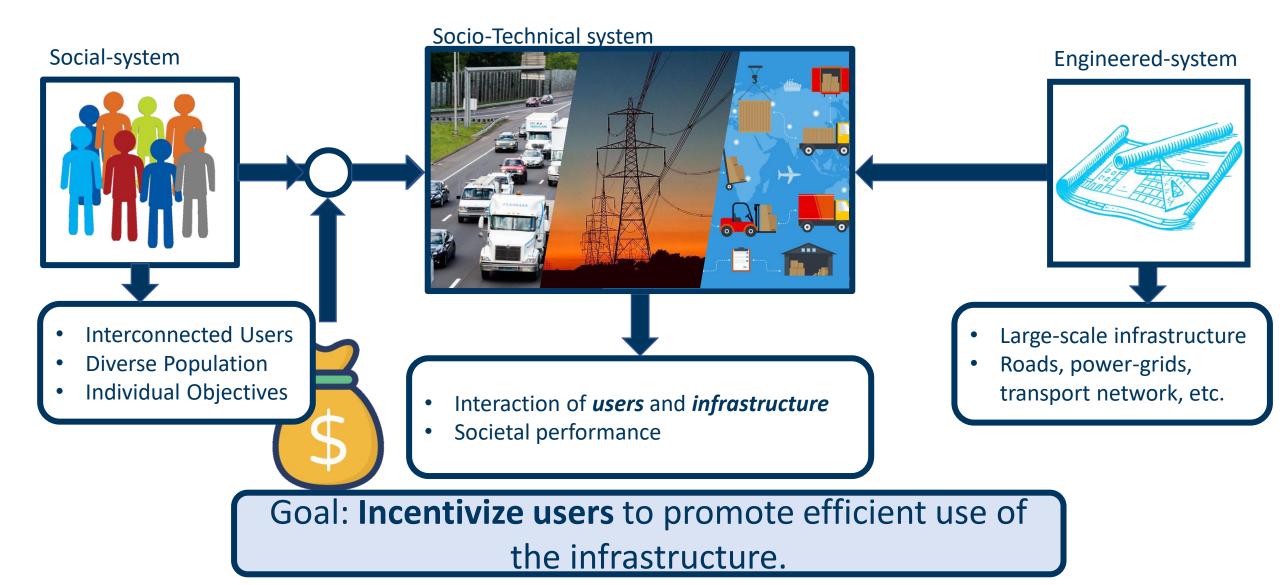


UC SANTA BARBARA



The Effectiveness of Subsidies and Taxes in Atomic Congestion Games

Bryce L. Ferguson¹, Philip N. Brown², Jason R. Marden¹

¹ University of California, Santa Barbara department of Electrical and Computer Engineering ² University of Colorado, Colorado Springs department of Computer Science

Socio-Technical Systems

Taxes/Tolls (+) Added cost to users

A. De Palma, R. Lindsey, "Private roads, competition, and incentives to adopt time-based congestion tolling," *Elsevier*

Q. Wang, M. Liu, R. Jain, "Dynamic pricing of power in smart-grid networks," *IEEE Conference on Decision and Control*

M. Christopher, J. Gattorna, "Supply chain cost management and value-based pricing," *Elsevier*

Transportation

Power Grids

Supply-chain Management

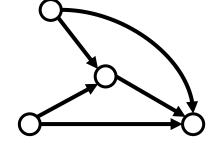
Subsidies/Rebates (-) Reduced cost to users

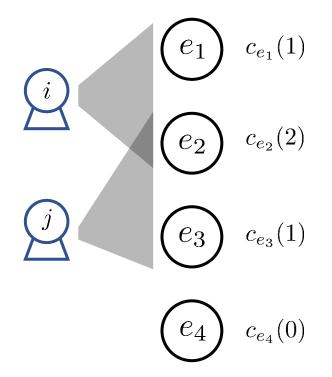
P. Maill'e and N. E. Stier-Moses, "Eliciting Coordination with Rebates," *Transportation Science*

S. Huang, Q. Wu, "Dynamic Tariff-Subsidy Method for PV and V2G Congestion Management in Distribution Networks," *IEEE Transactions on Smart Grid*

T. A. Taylor, "Supply Chain Coordination Under Channel Rebates with Sales Effort Effects," *Tech. Rep.*

Both are viable methods of influencing users in many settings Both can be implemented with similar technology/infrastructure Both can be monetarily feasible (fees vs reimbursements to up front cost)


Q?: What are the capabilities of each incentive?


Model

- Congestion Game G
 - Resources $\mathcal{E} = \{1, \dots, E\}$
 - $N = \{1, \dots, n\}$ • Agents
 - $a_i \in \mathcal{A}_i \subset 2^{\mathcal{E}}$ • Actions

 - Allocation $a = (a_1, \ldots, a_n) \in \mathcal{A}$
 - Cost functions $c_e(|a|_e) \ge 0$
 - Total Cost
 - $C(a) = \sum |a|_e c_e(|a|_e)$ $e{\in}\mathcal{E}$ • Optimal allocation $a^{\text{opt}} \in \arg\min C(a)$ $a \in \mathcal{A}$

Eg: Network Congestion

Selfish Decision Making


What happens when users choose their own routes?

Cost of user i

$$J_i(a_i, a_{-i}) = \sum_{e \in a_i} c_e(|a|_e)$$

Equilibrium: Nash equilibrium $a^{
m Ne}$

$$a_i^{\mathrm{Ne}} \in \operatorname*{arg\,min}_{a_i \in \mathcal{A}_i} \sum_{e \in a_i} c_e(|a|_e^{\mathrm{Ne}}) \quad \forall i \in N$$

Price of Anarchy

$$\operatorname{PoA}(G) := \frac{\max_{a^{\operatorname{Ne}} \in \operatorname{NE}(G)} C(a^{\operatorname{Ne}})}{C(a^{\operatorname{opt}})} \ge 1$$

How to reduce this inefficiency?

Incentive Mechanism:

 $T(c_e) = \tau_e$

Selfish Decision Making

What happens when users choose their own routes?

Cost of user i

$$J_i(a_i, a_{-i}) = \sum_{e \in a_i} c_e(|a|_e) + \tau_e(|a|_e)$$

Equilibrium: Nash equilibrium $a^{
m Ne}$

$$a_i^{\mathrm{Ne}} \in \underset{a_i \in \mathcal{A}_i}{\mathrm{arg min}} \sum_{e \in a_i} \left(c_e(|a|_e^{\mathrm{Ne}}) + \tau_e(|a|_e^{\mathrm{Ne}}) \right) \quad \forall i \in N$$

Price of Anarchy

$$\operatorname{PoA}(G,T) := \frac{\max_{a^{\operatorname{Ne}} \in \operatorname{NE}(G,T)} C(a^{\operatorname{Ne}})}{C(a^{\operatorname{opt}})} \ge 1$$

$$\begin{array}{c} \hline e_{1} & c_{e_{1}}(1) & +\tau_{e_{1}}(1) \\ \hline e_{2} & c_{e_{2}}(1) & +\tau_{e_{2}}(1) \\ \hline j & \hline e_{3} & c_{e_{3}}(0) & +\tau_{e_{3}}(0) \\ \hline e_{4} & c_{e_{4}}(1) & +\tau_{e_{4}}(1) \end{array}$$

How to reduce this inefficiency?

Incentive Mechanism:

$$T(c_e) = \tau_e$$

Incentives: Taxes & Subsidies

Tax function:

 $\tau_e^+(x) \ge 0 \quad \forall x \ge 0$

Taxation mechanism:

 $T^+(c_e) = \tau_e^+$ Only assigns tolls

Optimal taxation mechanism: $T^{\text{opt+}} \in \arg \min \text{PoA}(G, T^+)$ T^+

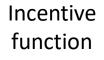
Tolls

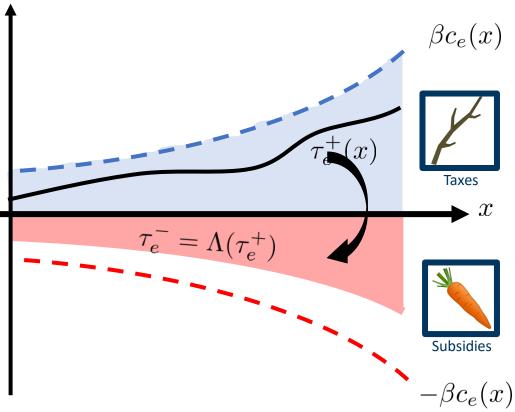
Subsidy function:

$$\tau_e^-(x) \le 0 \quad \forall x \ge 0$$

Subsidy mechanism: $T^{-}(c_{e}) = \tau_{e}^{-}$ Only assigns subsidies

Optimal subsidy mechanism: $T^{\text{opt}-} \in \arg \min \text{PoA}(G, T^-)$ T^{-} **Subsidies** $PoA(G, T^{opt+})$ $PoA(G, T^{opt-}$





Subsidies

Budgetary Constraints

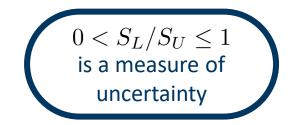
Added Constraint: $|\tau_e(x)| \leq \beta c_e(x) \quad \forall x \geq 0$

Theorem 1

For a congestion games G, under bounding factor $\beta \geq 0$,

 $\operatorname{PoA}(G, T^{\operatorname{opt}+}(\beta)) \ge \operatorname{PoA}(G, T^{\operatorname{opt}-}(\beta)) \ge 1$

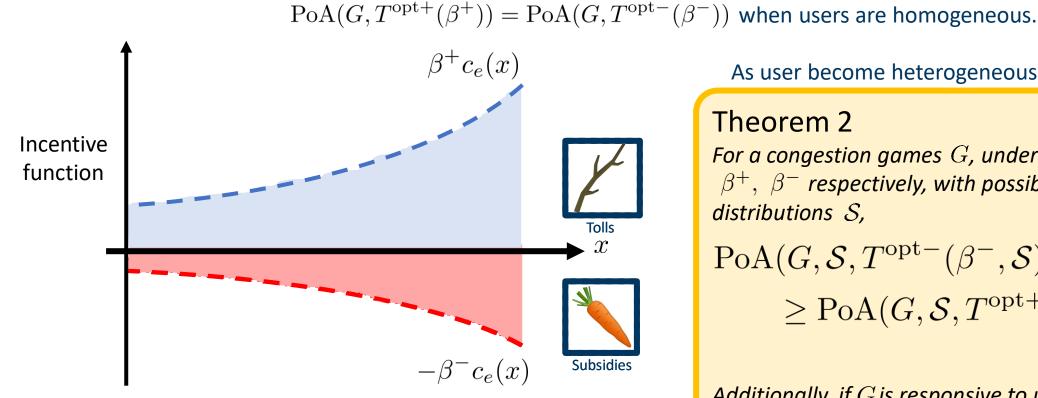
Additionally, if the budget constraint is active for every optimal incentive, the inequalities are strict.


Smaller subsidies can outperform larger taxes.

User Heterogeneity

Each user has unknown price-sensitivity $s_i \in [S_L, S_U]$

$$J_i(a_i, a_{-i}) = \sum_{e \in a_i} c_e(|a|_e) + s_i \tau_e(|a|_e)$$



 $\operatorname{PoA}(G, \mathcal{S}, T) = \sup_{s \in \mathcal{S}} \frac{\max_{a^{\operatorname{Ne}} \in \operatorname{NE}(G, s, T)} C(a^{\operatorname{Ne}})}{C(a^{\operatorname{opt}})}$

Q?: How do incentives perform with user heterogeneity?

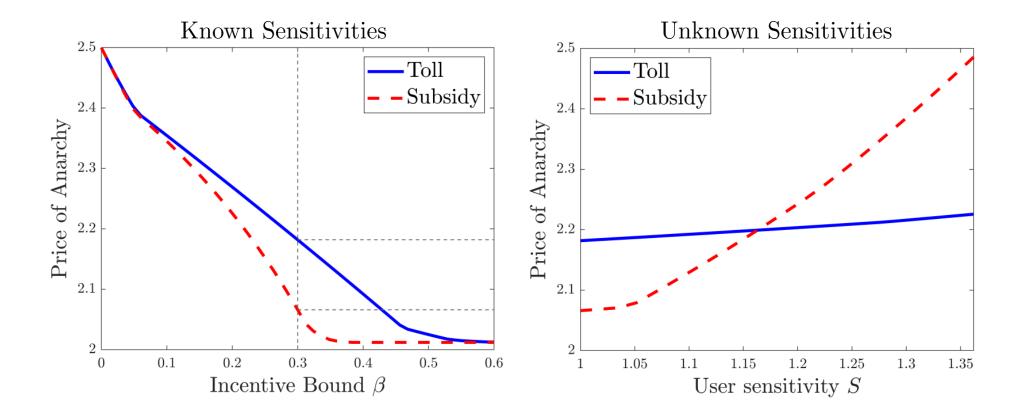
Budgetary Constraints & User Heterogeneity

Start with *nominally equivalent* bounded subsidies and tolls, i.e.,

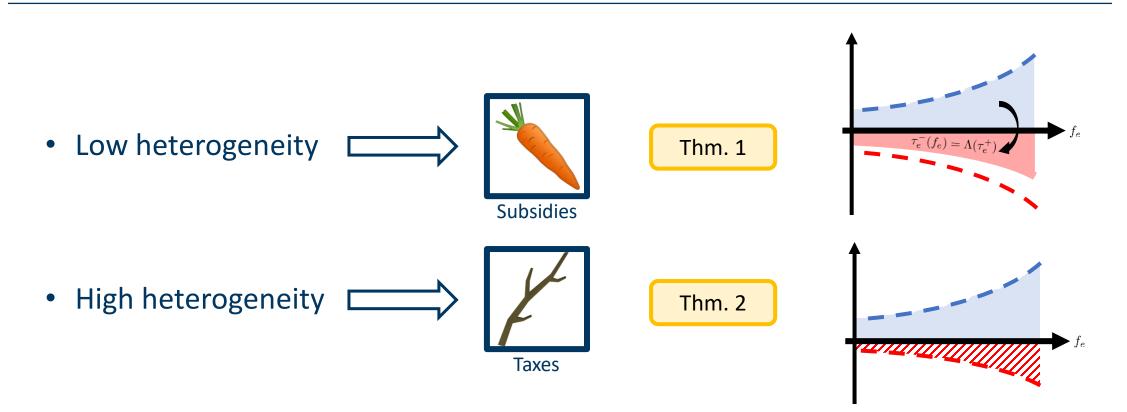
Performance of *subsidies is less robust* to player heterogeneity than taxes.

As user become heterogeneous:

Theorem 2


For a congestion games G, under bounding factors β^+, β^- respectively, with possible price-sensitivity distributions S,

 $\operatorname{PoA}(G, \mathcal{S}, T^{\operatorname{opt}}(\beta^{-}, \mathcal{S}))$ $> \operatorname{PoA}(G, \mathcal{S}, T^{\operatorname{opt}+}(\beta^+, \mathcal{S})) \ge 1.$


Additionally, if G is responsive to user heterogeneity, the inequalities are strict.

Computational Example

Price of anarchy bound over affine congestion games.

Conclusion

UC SANTA BARBARA

The Effectiveness of Subsidies and Taxes in Atomic Congestion Games

Bryce L. Ferguson¹, Philip N. Brown², Jason R. Marden¹

¹ University of California, Santa Barbara department of Electrical and Computer Engineering ² University of Colorado, Colorado Springs department of Computer Science